Adaptive Inverse Control
We dedicate this work to our families over the generations. They helped us and inspired us.

I would like to dedicate this book to my grandsons Jeffrey and Adam Sklarin, to their parents Rick and Debbie, to my daughter Leslie, to my wife Ronna Lee, and to the memory of my parents Moe and Ida Widrow.

Bernard Widrow

I would like to dedicate this book to my son Elad, to my daughter Algith, to my wife Rina, to my mother Sarah and to the memory of my father Benjamin Walach.

Eugene Walach
This Page Intentionally Left Blank
A Special Dedication to the Memory of Derrick Nguyen

Derrick Nguyen completed the Ph.D. in Electrical Engineering at Stanford University in June 1991. He was the first to develop neural controls for the “truck backer-upper,” based on backpropagation through time. His work has wide application in the field of nonlinear control. In his short life he accomplished a great deal. He was a favorite of all who knew him.
Contents

Preface xv

1 The Adaptive Inverse Control Concept 1
 1.0 Introduction 1
 1.1 Inverse Control 2
 1.2 Sample Applications of Adaptive Inverse Control 7
 1.3 An Outline or Road Map for This Book 22
 Bibliography 33

2 Wiener Filters 40
 2.0 Introduction 40
 2.1 Digital Filters, Correlation Functions, z-Transforms 40
 2.2 Two-Sided (Unconstrained) Wiener Filters 45
 2.3 Shannon-Bode Realization of Causal Wiener Filters 51
 2.4 Summary 57
 Bibliography 57

3 Adaptive LMS Filters 59
 3.0 Introduction 59
 3.1 An Adaptive Filter 60
 3.2 The Performance Surface 61
 3.3 The Gradient and the Wiener Solution 62
 3.4 The Method of Steepest Descent 64
 3.5 The LMS Algorithm 65
 3.6 The Learning Curve and Its Time Constants 67
 3.7 Gradient and Weight-Vector Noise 67
 3.8 Misadjustment Due to Gradient Noise 69
 3.9 A Design Example: Choosing Number of Filter Weights for an Adaptive Predictor 71
 3.10 The Efficiency of Adaptive Algorithms 74
 3.11 Adaptive Noise Canceling: A Practical Application for Adaptive Filtering 77
 3.12 Summary 81
 Bibliography 84
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9</td>
<td>Inverse Control with the Filtered-X Algorithm Based on DCT/LMS</td>
<td>194</td>
</tr>
<tr>
<td>7.10</td>
<td>Inverse Control with the Filtered-(\epsilon) Algorithm Based on DCT/LMS</td>
<td>197</td>
</tr>
<tr>
<td>7.11</td>
<td>Summary</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>208</td>
</tr>
<tr>
<td>8</td>
<td>Plant Disturbance Canceling</td>
<td>209</td>
</tr>
<tr>
<td>8.0</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>8.1</td>
<td>The Functioning of the Adaptive Plant Disturbance Canceler</td>
<td>211</td>
</tr>
<tr>
<td>8.2</td>
<td>Proof of Optimality for the Adaptive Plant Disturbance Canceler</td>
<td>212</td>
</tr>
<tr>
<td>8.3</td>
<td>Power of Uncanceled Plant Disturbance</td>
<td>215</td>
</tr>
<tr>
<td>8.4</td>
<td>Offline Computation of (Q_t(z))</td>
<td>215</td>
</tr>
<tr>
<td>8.5</td>
<td>Simultaneous Plant Modeling and Plant Disturbance Canceling</td>
<td>216</td>
</tr>
<tr>
<td>8.6</td>
<td>Heuristic Analysis of Stability of a Plant Modeling and Disturbance Canceling System</td>
<td>223</td>
</tr>
<tr>
<td>8.7</td>
<td>Analysis of Plant Modeling and Disturbance Canceling System Performance</td>
<td>226</td>
</tr>
<tr>
<td>8.8</td>
<td>Computer Simulation of Plant Modeling and Disturbance Canceling System</td>
<td>229</td>
</tr>
<tr>
<td>8.9</td>
<td>Application to Aircraft Vibrational Control</td>
<td>234</td>
</tr>
<tr>
<td>8.10</td>
<td>Application to Earphone Noise Suppression</td>
<td>236</td>
</tr>
<tr>
<td>8.11</td>
<td>Canceling Plant Disturbance for a Stabilized Minimum-Phase Plant</td>
<td>237</td>
</tr>
<tr>
<td>8.12</td>
<td>Comments Regarding the Offline Process for Finding (Q(z))</td>
<td>248</td>
</tr>
<tr>
<td>8.13</td>
<td>Canceling Plant Disturbance for a Stabilized Nonminimum-Phase Plant</td>
<td>249</td>
</tr>
<tr>
<td>8.14</td>
<td>Insensitivity of Performance of Adaptive Disturbance Canceler to Design of Feedback Stabilization</td>
<td>254</td>
</tr>
<tr>
<td>8.15</td>
<td>Summary</td>
<td>255</td>
</tr>
<tr>
<td>9</td>
<td>System Integration</td>
<td>258</td>
</tr>
<tr>
<td>9.0</td>
<td>Introduction</td>
<td>258</td>
</tr>
<tr>
<td>9.1</td>
<td>Output Error and Speed of Convergence</td>
<td>258</td>
</tr>
<tr>
<td>9.2</td>
<td>Simulation of an Adaptive Inverse Control System</td>
<td>261</td>
</tr>
<tr>
<td>9.3</td>
<td>Simulation of Adaptive Inverse Control Systems for Minimum-Phase and Nonminimum-Phase Plants</td>
<td>266</td>
</tr>
<tr>
<td>9.4</td>
<td>Summary</td>
<td>268</td>
</tr>
<tr>
<td>10</td>
<td>Multiple-Input Multiple-Output (MIMO) Adaptive Inverse Control Systems</td>
<td>270</td>
</tr>
<tr>
<td>10.0</td>
<td>Introduction</td>
<td>270</td>
</tr>
<tr>
<td>10.1</td>
<td>Representation and Analysis of MIMO Systems</td>
<td>270</td>
</tr>
<tr>
<td>10.2</td>
<td>Adaptive Modeling of MIMO Systems</td>
<td>274</td>
</tr>
<tr>
<td>10.3</td>
<td>Adaptive Inverse Control for MIMO Systems</td>
<td>285</td>
</tr>
<tr>
<td>10.4</td>
<td>Plant Disturbance Canceling in MIMO Systems</td>
<td>290</td>
</tr>
<tr>
<td>10.5</td>
<td>System Integration for Control of the MIMO Plant</td>
<td>292</td>
</tr>
<tr>
<td>10.6</td>
<td>A MIMO Control and Signal Processing Example</td>
<td>296</td>
</tr>
<tr>
<td>10.7</td>
<td>Summary</td>
<td>301</td>
</tr>
</tbody>
</table>
11 Nonlinear Adaptive Inverse Control

11.0 Introduction
11.1 Nonlinear Adaptive Filters
11.2 Modeling a Nonlinear Plant
11.3 Nonlinear Adaptive Inverse Control
11.4 Nonlinear Plant Disturbance Canceling
11.5 An Integrated Nonlinear MIMO Inverse Control System Incorporating Plant Disturbance Canceling
11.6 Experiments with Adaptive Nonlinear Plant Modeling
11.7 Summary

Bibliography

12 Pleasant Surprises

A Stability and Misadjustment of the LMS Adaptive Filter
A.1 Time Constants and Stability of the Mean of the Weight Vector
A.2 Convergence of the Variance of the Weight Vector and Analysis of Misadjustment
A.3 A Simplified Heuristic Derivation of Misadjustment and Stability Conditions

Bibliography

B Comparative Analyses of Dither Modeling Schemes A, B, and C
B.1 Analysis of Scheme A
B.2 Analysis of Scheme B
B.3 Analysis of Scheme C
B.4 A Simplified Heuristic Derivation of Misadjustment and Stability Conditions for Scheme C
B.5 A Simulation of a Plant Modeling Process Based on Scheme C
B.6 Summary

Bibliography

C A Comparison of the Self-Tuning Regulator of Åström and Wittenmark with the Techniques of Adaptive Inverse Control
C.1 Designing a Self-Tuning Regulator to Behave like an Adaptive Inverse Control System
C.2 Some Examples
C.3 Summary

Bibliography

D Adaptive Inverse Control for Unstable Linear SISO Plants
D.1 Dynamic Control of Stabilized Plant
D.2 Adaptive Disturbance Canceling for the Stabilized Plant
D.3 A Simulation Study of Plant Disturbance Canceling: An Unstable Plant with Stabilization Feedback
D.4 Stabilization in Systems Having Both Discrete and Continuous Parts
This Page Intentionally Left Blank
Preface

In this book, methods of adaptive signal processing are borrowed from the field of digital signal processing to solve problems in dynamic systems control. Adaptive filters, whose design and behavioral characteristics are well known in the signal processing world, can be used to control plant dynamics and to minimize the effects of plant disturbance. Plant dynamic control and plant disturbance control are treated herein as two separate problems. Optimal least squares methods are developed for these problems, methods that do not interfere with each other. Thus, dynamic control and disturbance cancelling can be optimized without one process compromising the other. Better control performance is the result. This is not always the case with existing control techniques.

Inverse control of plant dynamics involves feed-forward compensation, driving the plant with a filter whose transfer function is the inverse of that of the plant. Inverse compensation is well known in signal processing and communications.

Every MODEM in the world uses adaptive filters for channel equalization. Similar techniques are described here for plant dynamic control. Inverse control is feed-forward control. The same precision of feedback that is obtained with existing control techniques is also obtained with adaptive feed-forward control since feedback is incorporated in the adaptive algorithm for obtaining the parameters of the feed-forward compensator.

Inverse control can be used effectively with minimum phase and non-minimum phase plants. It cannot work with unstable plants, however. They must first be stabilized with conventional feedback, of any design that simply achieves stability. Then the plant and stabilizing feedback can be treated as an equivalent stable plant that can be controlled in the usual way with adaptive inverse control. Model reference control can be readily incorporated into adaptive inverse control.

Adaptive noise cancelling techniques are described that allow optimal reduction of plant disturbance, in the least squares sense. Adaptive noise cancelling does not affect inverse control of plant dynamics. Inverse control of plant dynamics does not affect adaptive disturbance cancelling. If initial feedback is needed to provide plant stabilization, the design of the stabilizer has no effect on the optimality of the adaptive disturbance canceller.

The designs of the adaptive inverse controller and of the adaptive disturbance canceller are quite simple once the control engineer gains a mastery of adaptive signal processing. This book provides an introductory presentation of this subject with enough detail to do system design. The mathematics is simple and indeed the whole concept is simple and easy to implement, especially when compared with the complexity of current control methods.

Adaptive inverse control is not only simple, but it affords new control capabilities that can often be superior to those of conventional systems. Many practical examples and applications are shown in the text.

Another feature of adaptive inverse control is that the same methods can be applied to adaptive control of nonlinear plants. This is surprising because nonlinear plants do not have transfer functions. But approximate inverses are possible. Experimental results with nonlinear plants have shown great promise. Optimality cannot be proven yet, but excellent
results have been obtained. This is a very promising subject for research. The whole area
of nonlinear adaptive filtering is a fascinating research field that already shows great re-
sults and great promise.

This book was originally published under the title *Adaptive Inverse Control*. We are
grateful to IEEE Press and John Wiley, Inc. for bringing it back into print. We are also
grateful to colleagues Gene Franklin, Karl Johan Åström, Jose Cruz, Brian Anderson,
Paul Werbos, and Shmuel Merhav for their early comments, suggestions, and feedback.
We are grateful to former Stanford students Steve Piche, Michel Bilello, Gregory Plett,
and Ming-Chang Liu who confirmed the results with experiments and who assisted with
preparation of the drawings and final manuscript.

BERNARD WIDROW
Stanford, California

EUGENE WALACH
Haifa, Israel
Chapter 1

The Adaptive Inverse Control Concept

1.0 INTRODUCTION

Adaptive filtering techniques have been successfully applied to adaptive antenna systems [1–20]; to communications problems such as channel equalization [21–30] and echo cancelation in long-distance telephony [31–39]; to interference canceling [40–46]; to spectral estimation [47–57]; to speech analysis and synthesis [58–60]; and to many other signal processing problems. It is the purpose of this book to show how adaptive filtering algorithms can be used to achieve adaptive control of unknown and possibly time varying systems.

The system to be controlled, usually called the "plant," may be noisy, that is, subject to disturbances, and for the most part it may be unknown in character. The plant and its internal disturbances may be time variable in an unknown way. In some cases, the plant might even be unstable. Adaptive control systems for such plants would be advantageous over fixed systems since the parameters of adaptive systems can be adjusted or tailored to the unknown and varying requirements of the plant to be controlled. Adaptivity finds a natural area of application in the control field [88].

In the past two decades or so, many hundreds of papers have been published on adaptive control systems in the Transactions of the IEEE Control Systems Society, in Automatica, in the IFAC (International Federation for Automatic Control) journals and conference proceedings, and elsewhere. At the same time, a very large number of papers on adaptive signal processing and adaptive array processing have appeared in the Transactions of the IEEE Signal Processing Society, Antennas and Propagation Society, Communications Society, Circuits and Systems Society, Aerospace and Electronics Society, the Proceedings of the IEEE, and elsewhere. Many books have been published on these subjects. The two schools of thought, adaptive controls and adaptive signal processing, have developed almost independently. The control theorists have by and large studied adaptive control using

1 Some prior knowledge of the character of the plant and its internal disturbances will be needed in order to establish proper control. For example, at least a rough idea of the transient response time of the plant would be required in order to model it adaptively. Some idea of how rapidly the plant characteristics change for plants that vary over time would be needed. Some knowledge of the plant disturbance would be useful, such as disturbance power level at the plant output. Detailed knowledge of the plant and its disturbances would not be required however.